
Smart Continuous Delivery Framework for Software Releases

 Anwin Varghese
 1

, Dr. Rohini V
 2

 and Dr. Prabu P
 3

1
 Research Scholar, Christ University, Bengaluru, India

2
 Associate Professor, Christ University, Bengaluru, India

3
 Assistant Professor, Christ University, Bengaluru, India

Abstract--- In today`s IT world, there is an increasing demand for quality software products that helps

business grow, which can in turn help reduce the effort in time & money and also be highly dependable. The

challenge of having product releases frequently is not quite an easy task as it sounds. To meet this challenge of

producing reliable software products, the IT managers & leads need a team of dedicated developers, system

programmers, testers along with a highly efficient process in place. Continuous Delivery (CD) is a software

engineering approach in which teams keep producing valuable software in short cycles and ensure that the

software can be reliably released at any time. CD is attracting increasing attention and recognition.

The continuous delivery mechanism already has certain frameworks such as agile framework, Scaled Agile

Framework (SAFe), Disciplined Agile Delivery (DAD), Composable Fault Tolerance Framework (CFT), Test

Orchestration Framework & Large-scale Scrum Framework (LeSS). These existing frameworks do not have any

approach to determine or predict the futuristic state of the continuous delivery pipeline. Detecting problems early

in development require a new CD approach that speeds up testing & eventually successful releases.

This research work will propose a new framework that can provide error & problem prediction analysis &

determine a desired futuristic state in software release lifecycle. The research proposes a new continuous

delivery framework with features of early defect recognition through machine learning and that is smart to take

informed decisions. This new framework can help the adoption of CD as a practice across IT organizations

helping in effective handling of scenarios when the existing frameworks fail. The intent is to generate and

maintain a data store to help in decision making for continuous delivery life cycle. The data will be collected &

stored & will be mined to be analyzed for success & failure points & concluding on reasons & factors towards

the outcomes. The data store will constitute the backbone of the machine learning that will be mined or possible

outcome scenarios hence assisting in early detection of problems & help with its resolution in the continuous

delivery lifecycle. Extending the adoption of the continuous delivery framework across organizations requires

cloud based deployments as most organizations depend on cloud services to host the services. There are a

plethora of cloud enablers available & the framework aims to provide the cloud enablement feature to help in its

increased adoption.

Keywords: Continuous Delivery, software, framework, release lifecycle.

1. Introduction

In today`s IT world, there is an increasing demand for quality software products that helps business grow,

which can in turn help reduce the effort in time & money and also be highly dependable. The various different

industries such as the automotive, industrial, defence, medical, agriculture are now making use of varied

software products & tools that help them in some aspect. This increasing dependency on software products helps

the IT industry thrive, grow & be sought after. However, it also puts up an equal challenge for it to be shipping

real good quality products quickly to meet the expectations of its end customers. The challenge of having

product releases frequently is not quite an easy task as it sounds. To meet this challenge of producing reliable

ISBN 978-93-84468-80-4
 International Conference on Recent Trends in Engineering and Technology

 (RTET-2016))

Pattaya (Thailand) Dec. 14-16, 2016

https://doi.org/10.15242/DIRPUB.DIR1216010 28

software products, the IT managers & leads need a team of dedicated developers, system programmers, testers

along with a highly efficient process in place. Continuous Delivery (CD) is a software engineering approach in

which teams keep producing valuable software in short cycles and ensure that the software can be reliably

released at any time. CD is attracting increasing attention and recognition.

Also we have the implementation frameworks based on one of these available. Play Framework, Robot

Framework and Microsoft Bot Framework are few of the implementation continuous delivery frameworks used

in the industry.

We find that the existing frameworks & its implementations do not have any approach to determine or

predict the futuristic state of the continuous delivery pipeline. Detecting problems early in development require a

new CD approach that speeds up testing & eventually successful releases. The problems in continuous delivery

are due to technical gaps in the software development lifecycle, quality gaps in the testing strategy for the

software and process gaps while accepting and propagating a flawed software artifact to adjacent environment.

These problems will grow with more and more software releases which will eventually cost in the long run.

This research work will propose a new hybrid framework that makes use of artificial intelligence & data

mining techniques to get error & problem prediction analysis & determine a desired futuristic state in software

release lifecycle. The research hopes to propose a new algorithm that will be the backbone of this proposed new

continuous delivery framework. The research will propose a new continuous delivery framework with features

of early defect recognition through machine learning and that is smart to take informed decisions. This new

framework can help the adoption of CD as a practice across the different IT organizations. It aims to capture the

challenges, complexities & benefits of the existing framework implementations & shows how adoption of the

new framework helps in handling scenarios when the existing frameworks fail.

The intent is to generate a decision for continuous delivery life cycle by making use of the analysis of data

collected over the life time of the software requiring it. The data will be collected & stored to be analysed for

success & failure points & concluding on reasons & factors for the outcomes. This data store will constitute the

backbone of the machine learning that will be mined for decisions to be made for the continuous delivery

lifecycle. Additionally, extending the adoption of the continuous delivery framework across organizations

requires cloud based deployments as most organizations depend on cloud to host the services. There are a

plethora of cloud enablers available & the framework aims to provide the cloud enablement feature to help in its

increased adoption.

2. Literature Survey

IT organizations are moving towards continuous integration and deployment which complements the agile

environment. As per Helena Holmstrom Olsson, Hiva Alahyari and Jan Bosch, CD is the ability of a software

lifecycle to deliver features to the customers frequently [2]. The continuous delivery mechanism already has

certain frameworks that are used in the implementation & to achieve it.

2.1. Waterfall Framework

Waterfall framework is one in which the progress of the delivery cycle of a feature release is taken step by

step. The framework follows the same principle of the waterfall software development life cycle. The decision of

moving forward with the next step of the delivery for feature release depends on the result of the current step. In

the framework time taken for releasing the feature is more. Also, the teams or resources involved will have idle

time that translates to resource wastage. This framework fell apart with evolution of parallel development tracks

& introduction of multi project shared resources.

2.2. SAFe Framework

The Scaled Agile Framework has been getting a lot of attention lately. SAFe is an interactive knowledge

base for implementing agile practices at enterprise scale. At the Team level, SAFe looks a lot like Scrum,

https://doi.org/10.15242/DIRPUB.DIR1216010 29

including of extreme programming practices. Not every sprint necessarily produces a potentially shippable

increment, but this should happen frequently, possibly after a hardening sprint. At the Program Level, the efforts

the agile teams are aligned and integrated to serve the needs of the enterprise and its stakeholders. SAFe

provides a fair amount of detail on how to do this. The Portfolio level provides similar product and goal

alignment between the investment levels and the operational levels of the organization. Lean thinking, the

Principles of Product Development Flow and the extensive benefits that agile development (Agile Manifesto,

Scrum, XP technical practices, Kanban) all play important roles in defining the principles and practices of SAFe

framework. The framework is one in which the progress of the delivery cycle of a feature release is taken step by

step [9].

2.3. DAD Framework

When moving forward with the idea of agile, an excellent framework is required if the project is large scaled.

Agility is easy to implement with small development procedure, however, when agility is to be implemented at

large scale, projects becomes difficult to handle. Alan. W. Brown, Scott Ambler and Walker Royce discussed

that how economic governance, measured improvement and disciplined delivery [3] construct a framework for

large scale agile projects. Disciplined Agile Delivery (DAD) is a framework which ensures scalability of agile

process. The framework has various characteristics such as: people first, explicit scaling support, goal driven,

enterprise awareness, risk and value driven, delivery focused, IT solution focused, agile, hybrid and learning

oriented. All these characteristics if embedded properly in the product development procedure will ensure its

reliability. Question arises that where does deployment issues are concerned in the DAD framework. DAD

framework is the second generation of agile framework; therefore it is an amalgamation of all the excellent

features of different agile methodologies. Goal-driven characteristic of DAD, make it aware of the issues that is

associated with each goal. This awareness of issues leads the team to look for solution beforehand. Hence at the

time of deployment, the realized goals must be associated with the underlying issues. And these issues could be

addressed to overcome complications arising due to them. Risk and value-driven characteristic followed by

DAD lets the team to identify the common risks and deliver solutions in short span of time. The delivery focused

characteristic, manages the post-delivery activities, which is necessary to handle the issues occurring during

deployment. Hence, DAD framework‟s approach vaguely ensures less production issues [9].

2.4. Composable Fault Tolerance Framework

The CFT framework integrates previously constructed components and also has techniques to tolerate fault.

The errors in continuous delivery could be minimized through automation. CFT framework is based on

workflow model composed of various execution entities. The prime aim of this framework is to uncover errors

and make the system fault tolerant. The idea is increment validation, which follows failure identification,

automatic fault injection, integration of fault detection/recovery with protected operation and validation of fault

tolerance. After increment validation, user provided control data is verified, followed by design of automated

testing environment. Having all the future failures sorted out beforehand keeps the team aware of the

deployment issues. [1]

2.5. Test Orchestration Framework

Test orchestration as per Nikhil Rathod and Anil Surve is a technique for automated testing and deployment

of software work products [5]. It analyses the codes, selects the tests to be conducted, schedules the tests,

prepare the environment, executes the tests, analyse the results and finally deploy. Primarily, its aim is to make

software reliable and bug free. All the steps involved in the process are automated. This is helpful in

identification of bottlenecks early. The visualization of deploying the builds in pre-production environment first

before actual deployment is a path that when followed will minimize the production issues. The design of test

orchestration framework consists of components such as build automation, test automation, reporting and

deployment automation. Build automation leads to a quality software because of reusing components for all

https://doi.org/10.15242/DIRPUB.DIR1216010 30

builds. In testing automation, a Test Driven Development (TDD) procedure is followed which tests the work

product at every stage. And testing always makes software product reliable. Reporting is a necessary component

of test orchestration framework, because previous results are helpful to develop and deploy a build with its help.

The deployment automation of the framework makes use of continuous integration as well as continuous

deployment, joining them to form a pipeline for life cycle. The framework characteristics that are useful for

handling production issues are future prediction and testing the product throughout the development. Future

predictions with the help of repository assist in minding the loopholes which could become issues during

deployment. Effective testing model a one way, through which bugs in the codes could be revealed, hence a

better model will probably minimize production issues. [1]

2.6. LeSS Framework

Large-scale Scrum is regular Scrum applied to large-scale development in very large organizations. The

basic roles are unchanged, but some of the meetings are changed and some are replicated at the-cross team level.

LeSS involves adding an additional role, the Area Product Owner, who assumes product Ownership of a major

section of the product. At this point, an Overall Sprint Review and Retrospective is also added to ensure overall

product consistency and process improvement. Sprint Planning may be held with representatives of each team,

rather than all members of all teams. Similarly, a cross team retrospective with representatives of each team

facilitates overall improvement. Teams are organized as Feature-Teams. Other inter-team coordination meetings

may be added, in the form of Scrum of Scrums or Open Space meetings [9].

3. Proposed Framework

The proposed framework is intended to help all the differently sized software teams with the continuous

delivery lifecycle. The requirements of a small software team will focus on more agile principles with less effort

spent on processes. However, a large team will be more into processes yet being quick with their releases. A

medium sized team will have a mix of the two in the sense they will want to have fast paced continuous delivery

with good process also in place. The proposed framework aims to assist all the varied needs of these teams. This

is achieved by generated a number, we name it the „devkata factor‟. The framework will define an algorithm to

compute this „devkata factor‟. The „devkata factor‟ is generated with computation of complexity risk

management, bugs in the software release & the time impact of the software release.

 Risk Management in agile environment, as quoted by Aalaa Albadarneh, Israa Albadarneh and Abdallah

Qusef, is focused minimally by researchers in recent years [6]. RM consists of identification, assessment and

prioritization of risks which leads organization to manage events which could turn the project upside down.

However, while working in an agile environment, various risks associated with the project fall back. In other

words agile reduces risks associated in various areas of project development. Various agile models implements

RM in its own specific way. However, DSDM and scrum provides better ways of managing risks than extreme

Programming (XP). The effectiveness of RM in agile model could be handful if implemented properly. It could

address deployment issues beforehand and provide the team with solutions [1]. From a software program

management perspective risk factor depends on the process followed, the structure of team & effectiveness of

industry prescribed development standards followed by the software team. The risk factor as we can understand

is important as it quantifies the standards followed & gives an idea of the process conformity to industry

standards [10].

The continuous testing phase will help discover the metrics with the number of bugs in the software release.

Features of test orchestration framework can be used to arrive at the bug factor of the software release. The

severity of the bug pays a very important role. It can be safely assumed that high impact, high severe bugs will

arrive at a high bug factor which will be detrimental negatively with the going ahead of the release. This also

helps the testing folks to always strive for the least bug factor possible. This in turn will lead to better test suits

& help software reach a state closer to being bug free.

https://doi.org/10.15242/DIRPUB.DIR1216010 31

The time of arrival in market of any software is extremely important for the businesses. If the software is

going to miss the time & will take more time then this will be economical disaster to the management. Hence the

time factor is the factor that will help management convey the need of required pace of progress with the

software release at any point in time.

Depending on the size of the software team, the threshold of these three factors can be set at an optimum

required value. The research work will propose an optimum value for the different factors & the eventual

„devkata factor‟ which will be the final value based on which decisions on continuous delivery lifecycle will be

taken.

A data store will be introduced that can be used to store the various factors contributing to the calculation of

the three important factors – risk factor, bug factor & time factor which will then give the overall „devkata

factor‟. The data store will be the main engine for calculation purpose and will be the main differentiator

compared to other existing frameworks. The data store will need data that will contribute to these different

factors. The research will arrive at these data points using analysis of the existing metrics in the continuous

delivery lifecycle. Once the different data points are identified, arrangement of data in the data store is the

challenge that will be solved in the research. The data points need to be stored using a data structure that can

help easy storage of data points & also aid in faster calculations of the factors. The calculation of the

intermediate factors & the eventual devkata factor will be taking place many times during the continuous

delivery lifecycle at the important junctions of the releases. This factor will aid in determining the error analysis,

risk analysis & time analysis at the given point & can be an eye opener for deciding the future course of actions.

The aim is to propose a new smart framework that makes use of artificial intelligence & data mining

techniques on the data store to understand how to achieve and what it takes to achieve a desired futuristic state in

a software release lifecycle. The research proposes a new algorithm that computes the devkata factor that can

determine the continuous delivery lifecycle.

4. Conclusion

Continuous delivery of a software in an industry requires to be fine-tuned with all the factors contributing to

it required to be measured quantitatively. It needs to be evaluated for the standards followed during the different

phases of the lifecycle. The risk factor will help with this aspect and in long run help the teams follow industry

standard by default. This will be beneficial with the frequent changing human resources of today`s times. Also,

there are additional benefits with metrics that can be generated with following an industry accepted standards for

different lifecycle phases. These metrics can be used for improvement in these phases and can a potential way of

achieving the required quality state. Similarly, testing the software for potential bugs is an important aspect &

bug factor aims to achieve to numerically quantify the testing effort. Also to detect problems early in

development there is need for the new CD approach that speedup testing & releases. This research work aims to

propose a new hybrid framework that makes use of risk management with artificial intelligence & data mining

techniques to get error prediction analysis & determine a desired futuristic state in software release lifecycle.

Time to market is very important for market facing software & quantifying the requirement will help

management throw the required focus, resources & focus in achieving the economical results. With the time

factor we achieve to get this aspect of software release. With these factors quantified, we calculate the devkata

factor. The data store which will be the engine to calculate these different quantifiable factors will be the crux of

the framework. The arrangement of the data in data store and the various variables and metrics that will be a part

of the metrics will be listed in this research. The framework will make use of the data store to arrive at the

devkata factor to help teams understand exactly how to achieve and what it takes to achieve a desired futuristic

state in a software release lifecycle.

 The research will focus on the framework to be host independent of the software releases. Framework can

be used in cases of the continuous delivery lifecycle in cloud based providers and its use is not limited to

https://doi.org/10.15242/DIRPUB.DIR1216010 32

software teams using traditional premise based resources. The research will propose the formula to arrive at the

devkata factor and the new algorithm that will be the backbone of the new continuous delivery framework.

5. References

[1] Aishwarya Vatsa and Shiv Kumar “Software Production Issues and Mitigation Techniques: A review”, International

Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June 2016, pp. 6-9

[2] Helena Holmstrom Olsson, Hiva Alahyari and Jan Bosch; “Climbing the “Stairway to Heaven””, 38thEuromicro

Conference on Software Engineering and Advanced Applications, IEEE, 2012, pp.392- 39.

[3] Alan W. Brown, Scott Ambler and Walker Royce; “Agility at Scale: Economic Governance, Measured Improvement,

and Disciplined Delivery”, ICSE, IEEE, 2013, pp. 873-881.

[4] Mika V. Mantyla and Jari Vanhanen; “Software Deployment Activities and Challenges – A Case Study of Four

Software Product Companies”, 15th European Conference on Software Maintenance and Reengineering, IEEE, 2011,

pp. 131-139.

https://doi.org/10.1109/csmr.2011.19

[5] Nikhil Rathod and Anil Surve; “Test Orchestration”, International Conference on Pervasive Computing, IEEE, 2015.

[6] Aalaa Albadarneh, Israa Albadarneh and Abdallah Qusef; “Risk Management in Agile Software: a Comparative

Study”, Jordan Conference on Applied Electrical Engineering and Computing Technologies, IEEE, 2015.

https://doi.org/10.1109/aeect.2015.7360573

[7] Humble, Jez & Farley, David. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment

Automation, Addison Wesley; 1 edition, 27 July 2010

[8] D. Leffingwell and Asd, “SAFe: Scaled Agile Framework,” 2014. [Online]. Available:

http://www.scaledagileframework.com/.

[9] Peter, “scaling-scrum-safe-dad-or-less,” 2013. [Online]. Available: http://www.scrum-breakfast.com/2013/10/scaling-

scrum-safe-dad-or-less.html

[10] Bryon Root. “Release Management – Build, Deploy, Test, and Continuous Improvement,” 2013. [Online]. Available:

http://blog.nwcadence.com/release-management-build-deploy-test-and-continuous-improvement/

https://doi.org/10.15242/DIRPUB.DIR1216010 33

https://doi.org/10.1109/csmr.2011.19
https://doi.org/10.1109/csmr.2011.19
https://doi.org/10.1109/csmr.2011.19
https://doi.org/10.1109/csmr.2011.19
https://doi.org/10.1109/aeect.2015.7360573
https://doi.org/10.1109/aeect.2015.7360573
https://doi.org/10.1109/aeect.2015.7360573
http://www.scaledagileframework.com/
http://www.scrum-breakfast.com/2013/10/scaling-scrum-safe-dad-or-less.html
http://www.scrum-breakfast.com/2013/10/scaling-scrum-safe-dad-or-less.html
http://blog.nwcadence.com/release-management-build-deploy-test-and-continuous-improvement/

