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Abstract: This paper proposes WG-WaveNet, a generative model for compact, accurate, and quick, waveform 

generation model. It comprises a lightweight flow-based model with an additional post-filter. The proposed 

process involved joint training of the two components by maximising the conformity to the training data and 

refining the loss functions tuned to their frequency. The proposed model demands significantly fewer 

computations against various other generative models on both training and testing, as it’s designed as a heavily 

compressed flow-based model. Despite the heavy compression of the model, the quality of the generated 

waveform is maintained by the post-filter. On an NVIDIA 1080 Ti GPU, the PyTorch based implementation can 

allow training with under 8 GB of GPU memory and produces audio waveforms at above 960 kHz. Additionally, 

it has been demonstrated that the suggested approach can generate 44.1 kHz speech waveforms 20% quicker as 

opposed to real-time even when synthesised on CPUs. 
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1. Introduction  

Models based on neural network are constantly demonstrating progressively cutting-edge performances at 

speech-based operations like and voice conversion text-to-speech [1,2,3,4]. A major set of the above models are 

generally made up of two parts. The first component performs speech based operations and produces acoustic 

properties  [5] like spectrograms [1,2], F0 frequencies, etc. The second component, called vocoder, represents the 

implementation of heuristic algorithms in a generative manner that converts acoustic data into their 

corresponding audio samples [6,7,8]. 

WaveNet [5] was initially developed to be a neural network based vocoder in order to generate natural-

sounding human-like audio [1]. WaveNet's auto-regressive architecture allows it to generate high-quality audio, 

but it also results in a considerably high inference time.  

 This paper aims to design a waveform generating model that is efficient, high-quality, and has minimal 

footprint. We begin by compressing WaveGlow using the weight-sharing method[10], thereby considerably 

reduces the vocoder size. In order to mitigate the adverse effects of compression on the speech quality, a post-

filter that is based on WaveNet is used. Training phase is performed using frequency domain loss  functions. 

Given that the post-filter just necessitates modification of the initial compressed WaveGlow’s output, a smaller 

variant of WaveNet is adequate, enabling the resulting model to be quick and compact. The proposed model, 

WG-WaveNet, has the advantage of being simple in terms of network design as well as loss function. 

Furthermore, as opposed to other neural vocoding methods, it has a substantially lower computing cost at both 

training and testing.This work’s contributions are summarised below: 

A hybrid vocoder model comprising a heavely compressed WaveGlow and a post-filter based on WaveNet 

is proposed. The model, referred to as WG-WaveNet, has shown to be effective both in terms of computational 

cost and performance during training. In the original WaveGlow paper, 8 NVIDIA GV100 GPUs were stated to 
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be used for Training [9], while WG-WaveNet can be trained in 4 days with an NVIDIA 1080 Ti GPU requiring 

under 8 GB of GPU memory. The proposed model significantly boosts the generating efficiency. Notably, WG-

WaveNet's inference speed is above 960 kHz when with an NVIDIA 1080Ti GPU and 50% quicker than real-

time with just a CPU. Subjective evaluation experiments reveal that the model can create speech of comparable 

fidelity to WaveNet, Squeeze-Wave , WaveGlow, and Parallel WaveGAN . 

 

Fig. 1. WG-WaveNet Architecture                                                          Fig. 2. WG-WaveNet Training 

 

 The paper also investigates the accuracy of 44.1 kHz high-fidelity audio waveforms synthesised by 

neural vocoders. The effects of varying sampling rates and varying parameters used for the underlying Short-

Time Fourier Transform (STFT) on the performance of the audio are studied. The proposed method system not 

only enables synthesising audio samples at 44.1 kHz 20% faster than real-time with a single CPU, but also 

achieves a MOS score of 4.01, which outperforms 16 kHz recordings 

2. Proposed System 

The proposed model, is made up of two sections, as shown in Fig. 1, hereto referred as WG-WaveNet. 

2.1. Heavily Compressed WaveGlow 

WaveGlow [9] was designed as a reversible network that was trained primarily to model real-world voice 

data distribution. The model is trained using audio inputs and Mel-spectrogram as condition. It  is trained to 

convert the training dataset’s audio sample distribution into a zero-mean spherical Gaussian distribution. The 

goal of training stage is to maximise the conformity of training data. In the testing stage, an inverted variant of 

WaveGlow obtains an input of random sampled Gaussian noise and produces a speech waveform that are 

conditioned on a Mel-spectrograms. 

The model comprises multiple transformations that are used for incremental mapping speech data into 

Gaussian space. Every transformation comprises one affine coupling layer along with a 1x1 invertible 

convolution layer. WaveGlow's affine coupling layers each use a module that is similar to WaveNet. The 

resulting model is massive and is very difficult to train.  

To minimise the parameter count and thereby further compact the model, cross-layer parameter sharing of 

parameters is  employed. The cross-layer sharing of parameters has been established to be beneficial in the 

Natural Language Processing task pre-training as well as source separation. As portrayed in Fig. 1, a common 

affine coupling layer is shared by the Transformations in the compressed WaveGlow, achieved by removing the 

early-output mechanism and keeping the output shape constant across layers. This method prevents the model 

expanding in size as the network gets deeper.  

The training procedure is replicated as described in [9], as indicated by the dotted green flow in Fig. 2. The 

loss function, represented by Lz, represents the negative log of the likelihood for the given training data. The 
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compression method minimises the WaveGlow parameter count while significantly reducing the GPU memory 

needed. The following section  proposes a post-filter to further increase convergence speed and boost the 

compressed WaveGlow’s performance. 

2.2. Post-Filter based on WaveNet 

The input for the proposed inverted Compressed WaveGlow is random noise sample z, obtained from a 

Gaussian distribution. The obtained output is next fed into the post-filter which is based on WaveNet, which 

parallely generates x̂, conditioned over upsampled Mel-spectrograms. The post-filter is then further trained by 

minimising the network’s loss function represented by Ls(x, x̂), where x represents the  real world samples and x̂ 

represents the post-filter’s output. To minimise Ls(x, x̂)2, both the post-filter as well as the inverted compressed 

WaveGlow are jointly trained. As WaveNet synthesises audio samples based on the inverted compressed 

WaveGlow output, it's also feasible to significantly reduce its parameters. 

The model employs loss functions on several frequency domains for Ls. Spectral losses were found to be 

beneficial for training waveform generating models. The multi-resolution STFT auxiliary loss is modified as 

below. 

     

here, M represents the various parameter sets’ count for STFT; Lmag and Lsc are the log of the STFT magnitude loss and 
the spectral convergence loss from: 

 

     (3) 

here, ||·||F represents Frobenius norm, ||.|| represents L1 norm, |STFT(.)| represents the STFT magnitude, and Nmag 

represents the magnitude’s element count. In order to make Ls more compatible to natural human perception, an 

STFT-magnitude loss on the  Mel-scale is utilized:  

here, the symbol |MEL(.)| represents the Mel-scaled magnitude of the Short Time Fourier Transform while 

Nmel represents the magnitude’s element count. The Mel band count varies based on the varying sets of STFT 

parameters.                                     

 



   


The model’s second part, post-filter is jointly trained alongside the aforementioned inverted compressed 

variant of WaveGlow, depicted using red in Fig . 2. The training process for WG-WaveNet uses a linear 

combination of Lz and Ls for the loss function. The loss terms are balanced by a scalar coefficient, λ. The loss Ls 

is periodically calculated at every n iterations. The whole WG-WaveNet model is reduced to one thirty-fifth the 

size of the original WaveGlow. 

3. Experiments 

3.1. Datasets 

The experiments utilised two datasets, with the LJ Speech Dataset being one of them. This LJ dataset 

contains 13100 clean audio samples (approximately adding up to 24 hours) in English spoken by a female 

control. The samples were  recorded at 22050 Hz. The other dataset utilized  was a corpus of 9,004 Mandarin 

utterances (summing up to around 6.8 hours) by a female control subject, recorded at a sampling rate of 44100 

Hz. From each dataset, 100 utterances were chosen for evaluation. A Mel-spectrogram of 80 bands was used in 
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the audio synthesising phase. WG-WaveNet's STFT has its window size as 800, hop size as 200, and a Fast 

Fourier Transform size of 2048. 

3.2. Model Details  

The post-filter is built with seven layers of 64-channel dilated convolution blocks. The original model of 

WaveGlow employs 12 transformations. The compressed WaveGlow is composed of only four transformations 

owing to the post-filter. The shared affine coupling layer’s WaveNet-like module consists of seven layers of 128 

channels. Both the compressed WaveGlow as well as the post-filter contain a reduced count of channels and 

layers than the initial WaveGlow and WaveNet, thereby allowing the WG-WaveNet to be significantly lighter. 

WaveGlow uses 87.9 million parameters while WaveNet uses 24.7 million.. On the other hand, WG-WaveNet 

contains just 2.5 M parameters, which is approximately 3% and 10% of the parameters used by WaveGlow and 

WaveNet, respectively.   

TABLE I.  LOSS FUNCTION LS PARAMETERS 

Parameters Values 

Window Size 100,200,400,800,1600 

Hop Size 25,50,100,200,400 

FTT Size 256,512,1024,2048,4096 

Mel Band Count 40,80,160,320,640 

 

The proposed technique was compared against four base models: WaveGlow, Parallel WaveGAN, 

SqueezeWave, and WaveNet. The proposed model’s training consisted of 1 million steps with a batch size of 

eight while employing the Adam optimizer. The rate of learning was 4e-4 and was halved every 200 thousand 

steps. On the basis of preliminary studies, the set parameters were λ=1 and n=3. Table I contains the parameters 

used to calculate Ls in Section 3.2. 

3.3. Speed and Computational Costs 

The memory usage along with the speed for training and testing were assessed for various models. The 

training phase for both WG-WaveNet and Parallel WaveGAN was performed in same server running on Nvidia 

V100, with 16 GB of GPU memory to evaluate the training stage’s computational costs. The testing setup 

consisted of a PC running on Intel i7-6700K processor, with an Nvidia 1080 Ti GPU.  

3.4. Audio Quality Comparison 

Subjective evaluations were done by performing MOS (Mean Opinion Score) tests (higher is better) and 

objective evaluation was done using Mel Cepstral Distortion (MCD) (the lower the better). For the MOS test, 

testers were instructed to assign a quality rating to utterances out of 5. Each speech was chosen at random from 

testing set and assessed by a minimum of twenty raters. Despite using the official release models to generate 

utterances, SqueezeWave and WaveGlow both performed poorly. Subjects  reported that the synthesised speech 

contained noise and reverberation effects. The ablation investigation demonstrates that both Lz and Ls are 

essential for WG-WaveNet training. It was discovered that training with Ls (λ = 0, n = 1) alone resulted in high-

quality voiced speech but substantial high-frequency glitches in unvoiced speech. Improvements on the 

generating efficiency has shown to result in rapid reduction in the MOS. However, WG-WaveNet is both faster 

and scores a 4.09 MOS, comparable to Parallel WaveGAN’s MOS. These results demonstrate that WG-

WaveNet may significantly speed up synthesis while maintaining comparable performance. As a result of WG-

WaveNet’s high testing speed demonstrated in Sections 3.3 and 3.4, the model is effective in generating high-

fidelity audio (sampling rate of 44.1 kHz). The Parallel WaveGAN model and the WG-WaveNet model utilized 
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the same 44.1 kHz speech dataset specified in Section 3.1 for training to evaluate their performance. WG-

WaveNet was compared solely against Parallel WaveGAN primarily as only SqueezeWabe and Parallel 

WaveGAN are capable of synthesising audio at 44.1 kHz, and SqueezeWave's audio fidelity is inferior to 

Parallel WaveGAN’s fidelity. MOS evaluations were run on both the generated waveform as well as the ground 

truth data using identical settings as in Section 3.4 but with different sampling rates. 

 
TABLE II.  THE EVALUATION METRICS MEAN OPINION SCORE AND 

MEL CEPSTRAL DISTORTION  AGAINST OTHER MODELS AND MEL-
SPECTROGRAM GENERATED FOR GROUND TRUTH. THE MEAN OPINION 

SCORE RESULTS HAVE CONFIDENCE INTERVALS OF 95%. 

 

 

Fig. 2. MOS vs GPU inference speed 

 

Model Mean Opinion 

Score 

Mel Cepstral 

Distortion 

WaveGlow  3.61±0.149 4.293 

Parallel 

WaveGAN 

 4.23±0.107 4.025 

SqueezeWave  2.95±0.131 3.607 

WaveNet 4.47±0.103 4.617 

WG-WaveNet   

λ = 0, n = 1 3.66±0.165 2.406 

λ = 1, n = 1 3.22±0.161 2.947 

λ = 1, n = 3 4.09±0.119 3.782 

g-20  3.74±0.125 3.851 

Ground Truth  4.62±0.095 - 

 

 

Table III summarises the findings. "w800" indicates that the window size for Mel-spectrogram extraction 

has been set at 800. Additionally, the hop size, FTT size, and the Mel band count are identical to those specified 

in Section 3.1. "w1600" indicates a doubled window size of 1600 pixels, with all other parameters having been 

doubled as well. 

Due to the change in sample rate from 22,050 to 44,100, doubling the Short Time Fourier Transform 

parameters (w1600) results in the same temporal resolution of retrieved features similar to in Section 3.4, 

whereas "w800" doubles the temporal resolution. Similarly, the parameters used to calculate Ls in "w800" are 

identical to those in Table I, but are doubled in "w1600." Initially, the ground truth samples’ sampling rates were 

shown to have a considerable effect on their perceived quality and consequently their perceptual scores. The 

raters determined that larger sample rates for ground truths were better. Experiments demonstrated that 

generating 44.1 kHz speech was more difficult than generating 22 kHz speech if the temporal resolution for the 

acoustic features was set a constant (w1600). 

Mel-spectrograms with a higher temporal resolution (w800) were shown to help improve the performance of 

WG-WaveNet (w800). In both the "w800" and "w1600" instances, WG-WaveNet outperformed Parallel 

WaveGAN. The faster WG-WaveNet finally achieved a MOS of 4.01, which is superior to even that of ground 

truth speech at 16kHz. Table IV summarises the MOS testing results and the GPU inference speed for vocoders 
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TABLE III.  HIGH-QUALITY AUDIO SYNTHESIS MOS VALUES WITH 

CONFIDENCE OF 95%. MEL-SPECTROGRAM FOR 44.1 KHZ GROUND TRUTHS 

WERE GENERATED. 

TABLE IV.  EVALUATION OF MEAN OPINION SCORE AND GPU  

TESTING SPEED (IN KHZ) AGAINST OTHER MODELS. THE TACOTRON 2 

MODEL WAS USED TO GENERATE THE MEL-SPECTROGRAMS. THE MOS 

RESULTS HAVE CONFIDENCE INTERVALS OF 95%. HIGH-QUALITY AUDIO 

SYNTHESIS 

Model Mean Opinion Score 

Parallel WaveGAN  

            w800  3.04±0.125 

            w1600 3.12±0.133 

WG-WaveNet  

            w800 (g-20) 4.02±0.110 

            w800 3.72±0.131 

            w1600 3.16±0.147 

16 kHz Ground Truth  3.73±0.146 

22 kHz Ground Truth  4.14±0.126  

44.1 kHz Ground Truth 4.43±0.104 
 

 

Model of Vocoder with 

Tacotron 2 

Mean 

Opinion 

Score 

Testing 

Speed 

Griffin Lim  2.12±0.138 - 

Parallel WaveGAN 3.73±0.122 842 

WaveNet 3.97±0.115 0.13 

WG-WaveNet 3.67±0.132 966 

Ground Truth  4.35±0.107 - 

 

 

 

4. Conclusion 

This paper proposed WG-WaveNet, a waveform generating model that is quick, lightweight, and produces 

high-quality waveforms. By combining a heavily compressed WaveGlow with a post-filter based on WaveNet, 

the resulting WG-WaveNet utilises significantly fewer computer resources during both training and inference 

than previous parallel synthesis approaches. Experimental results demonstrate WG-WaveNet’s capability to 

generate high-fidelity audio samples at 44.1 kHz and 22 kHz quicker than real-time without the use of a GPU.  
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